Isotropy of Algebraic Theories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropy theorem for cosmological Yang-Mills theories

We consider homogeneous non-Abelian vector fields with general potential terms in an expanding universe. We find a mechanical analogy with a system of N interacting particles (with N the dimension of the gauge group) moving in three dimensions under the action of a central potential. In the case of bounded and rapid evolution compared to the rate of expansion, we show by making use of a general...

متن کامل

Algebraic theories

We presents the algebraic theories over an arbitrary monoid, main properties and calculus rules. Ordered, rationaly closed and ω-continuous theories on one hand and matrix and complete matrix theories on the other hand are the presentation main subjects. Some examples comming from algebra and computer science finish this paper.

متن کامل

Extension of Algebraic Theories

The algebraic theories of Lawvere are extended in a natural way to small complete categories. These categories exhibit not only the operations and identities, but some of the homomorphisms, functions, objects and constructions which are encountered when working within the algebraic categories associated with the theories. The category of extended theories is isomorphic to the original category ...

متن کامل

Algebraic Realization for Cyclic Group Actions with One Isotropy Type

Suppose G is a cyclic group and M a closed smooth G– manifold with exactly one isotropy type. We will show that there is a nonsingular real algebraic G–variety X which is equivariantly diffeomorphic to M and all G–vector bundles over X are strongly algebraic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Notes in Theoretical Computer Science

سال: 2018

ISSN: 1571-0661

DOI: 10.1016/j.entcs.2018.11.010